Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Language
Document Type
Year range
2.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3962097

Subject(s)
COVID-19
3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.12.472257

ABSTRACT

Knowledge of the factors contributing to the development of protective immunity after vaccination with COVID-19 mRNA vaccines is fragmentary. Thus we employed high-temporal-resolution transcriptome profiling and in-depth characterization of antibody production approaches to investigate responses to COVID-19 mRNA vaccination. There were marked differences in the timing and amplitude of the responses to the priming and booster doses. Notably, two distinct interferon signatures were identified, that differed based on their temporal patterns of induction. The first signature (S1), which was preferentially induced by type I interferon, peaked at day 2 post-prime and at day 1 post-boost, and in both instances was associated with subsequent development of the antibody response. In contrast, the second interferon signature (S2) peaked at day 1 both post-prime and post-boost but was found to be potently induced only post-boost, where it coincided with a robust inflammation peak. Notably, we also observed post-prime-like (S1++,S20/+) and post-boost-like (S1++,S2++) patterns of interferon response among COVID-19 patients. A post-boost-like signature was observed in most severely ill patients at admission to the intensive care unit and was associated with a shorter hospital stay. Interestingly, severely ill patients who stayed hospitalized the longest showed a peculiar pattern of interferon induction (S1-/0,S2+), that we did not observe following the administration of mRNA vaccines. In summary, high temporal resolution profiling revealed an elaborate array of immune responses elicited by priming and booster doses of COVID-19 mRNA vaccines. Furthermore, it contributed to the identification of distinct interferon-response phenotypes underpinning vaccine immunogenicity and the course of COVID-19 disease.


Subject(s)
COVID-19 , Inflammation , Severe Acute Respiratory Syndrome
4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.18.21260718

ABSTRACT

Complementing whole genome sequencing strategies with high-throughput multiplex RT-qPCR genotyping allows for more comprehensive and real-time tracking of SARS-CoV-2 variants of concern. During the second and third waves of COVID-19 in Qatar, PCR genotyping, combined with Sanger sequencing of un-typeable samples, was employed to describe the epidemiology of the Alpha, Beta and Delta variants. A total of 9792 nasopharyngeal PCR-positive samples collected between April-June 2021 were successfully genotyped, revealing the importation and transmission dynamics of these three variants in Qatar.


Subject(s)
COVID-19
5.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.04.08.20055731

ABSTRACT

The ongoing pandemic of the novel coronavirus, SARS-CoV-2, has led to a global surge in laboratory testing for the virus. The gold standard approach to detecting an active viral infection is the use of RT-qPCR. This approach requires the isolation of viral RNA from respiratory specimens, such as nasopharyngeal swabs. We developed a method using a widely available lysis buffer coupled with solid-phase reverse immobilization (SPRI) beads to extract viral RNA from swabs collected in viral transport medium (VTM) which can be performed manually or on a Hamilton STAR liquid-handling robot. Using a WHO recommended, laboratory-developed RT-qPCR for SARS-CoV-2, we validated this method in a CAP-accredited laboratory, against the IVD-labelled bioMerieux NucliSENS easyMAG automated extraction platform. Our method demonstrates a comparable sensitivity and specificity, making it suitable for large-scale testing and monitoring of suspected COVID-19 cases and healthcare workers. This is especially important as the world faces critical shortages of viral RNA extraction reagents for the existing commercial extraction systems.


Subject(s)
COVID-19 , Virus Diseases
SELECTION OF CITATIONS
SEARCH DETAIL